Como os fósseis se formam a partir da madeira

Madeira fossilizada (Imagem por: Darwin Pucha Cofrep)

Como um tronco de árvore se transforma em madeira petrificada? Isso pode ocorrer por diversas formas e envolver substâncias químicas diferentes. Para que ocorra a petrificação, é necessário que a madeira seja capaz de interagir com a substância petrificante, fazendo-a precipitar a partir da solução aquosa. Entre as substâncias que possuem essa característica está a sílica (SiO2). Na verdade, não há uma molécula de SiO2. A sílica forma sólidos covalentes. Trata-se uma cadeia ou rede de átomos de oxigênio e silício, unidos por ligações covalentes, na proporção de 1 átomo de silício para 2 átomos de oxigênio. O SiO2 é um dos principais constituintes da areia e pode formar sólidos como o quartzo, a calcedônia e as opalas [1]. A sílica é um sólido insolúvel em água com pH nas vizinhanças de 7 e em temperaturas brandas. Ao bem da verdade, se pulverizarmos vidro (que é em grande parte SiO2) e aquecermos até a ebulição com água por cerca de uma hora, mais ou menos 1% da sílica do vidro será hidrolisada (reagirá com água) e passará para a solução aquosa. Isso faz parte de um dos experimentos de laboratórios dos cursos de graduação para os quais leciono. Todavia, em soluções básicas (pH elevado) a sílica pode ser hidrolisada com mais facilidade e liberar quantidades razoáveis de íons silicato. De forma similar, em soluções ácidas a hidrólise da sílica libera o ácido silícico, Si(OH)4.

Chamamos de silicificação a penetração e a fixação de sílica no material orgânico que servirá de base para a formação do fóssil. A silicificação é considerada por alguns autores como o processo individual mais importante na preservação de plantas no registro fóssil [3]. Embora alguns autores prefiram manter uma distinção entre silicificação e petrificação, neste artigo vamos usar os dois termos como sinônimos, como tem sido prática comum na literatura da área. Acredita-se que o ácido silícico seja o principal responsável pela silicificação [2]. Os tecidos vasculares das plantas são compostos principalmente por holoceluloses (um grupo de sacarídeos que inclui a celulose) e por ligninas (polímeros complexos compostos de unidades de fenilpropano) [2]. Tanto as holoceluloses quanto as ligninas possuem grupos hidroxila que podem formar ligações de hidrogênio com o ácido silícico.
No processo de petrificação, as moléculas de ácido silícico passam da solução aquosa para a superfície dos constituintes moleculares do tecido vascular da madeira (holoceluloses e ligninas). Na medida em que o ácido silícico vai se acumulando dentro da madeira, suas moléculas começam a se fundir. A continuação desse processo leva à formação de um filme de sílica ao redor das superfícies celulares, reproduzindo as características histológicas da madeira. Por causa disso, a petrificação por meio de sílica é capaz de preservar uma riqueza impressionante de detalhes não observáveis em outros tipos de fossilização.
Por que um pedaço de madeira não se fossiliza se for simplesmente enterrado no solo, pois a areia é formada principalmente por SiO2? A petrificação da madeira depende da existência de uma quantidade razoável de ácido silícico em solução. O ácido silícico, como vimos, é gerado a partir da sílica em meio ácido, e a maioria dos reservatórios naturais de água não é suficientemente ácida para hidrolisar uma quantidade apreciável de sílica.
É muito comum que madeira petrificada seja encontrada em regiões vulcânicas [4], particularmente se uma erupção ocorreu na época em que a madeira foi soterrada [5]. Os vulcões fornecem três elementos fundamentais para o processo de petrificação. Primeiramente, em um ambiente catastrófico as chances de que a madeira seja soterrada rapidamente antes de se decompor são muito elevadas. A madeira precisa ser protegida contra a degradação para que as moléculas de ácido silícico tenham tempo o bastante para se infiltrar e se depositar em seu interior. Em segundo lugar, as cinzas vulcânicas são constituídas em sua maioria por SiO2 [6]. Por fim, os vulcões são responsáveis pela produção de gases como o SO2 que, quando dissolvido em água, deixa o meio ácido gerando ácido sulfuroso (H2SO3) ou mesmo ácido sulfúrico (H2SO4).
Então os eventos são os seguintes. Durante a erupção de um vulcão nas proximidades de fontes de água, plantas podem ser soterradas catastroficamente, sendo encobertas por sedimentos com grande quantidade de cinzas vulcânicas (fonte rica em SiO2). A água misturada aos sedimentos é ácida, sendo capaz de promover a liberação de ácido silícico para a solução. O ácido silícico, por sua vez, se fixa às holoceluloses e às ligninas da madeira por meio de ligações de hidrogênio. O acúmulo de ácido silício leva então à formação de um filme de sílica, como dissemos acima.
Mas o quão rápido é esse processo? Fragmentos de madeira recuperados de cinzas vulcânicas de uma erupção em 1886 na Nova Zelândia estavam parcialmente petrificados apenas 90 anos após o soterramento [2]. Madeira de coníferas soterradas por cinzas vulcânicas na erupção histórica de 1885 do Monte Santa Helena apresentava petrificação incipiente após 102 do soterramento [5]. Mas o resultado mais impressionante vem de um grupo de pesquisadores do Japão [4]. Esses pesquisadores observaram que em um certo lago de águas quentes, nas vizinhanças de um vulcão, eram frequentemente encontrados pedaços de madeira impregnadas com sílica. Esses pedaços de madeira caiam naturalmente das plantas nas vizinhanças do lago. Os pesquisadores notaram que a textura desse material era a mesma de madeira silicificada encontrada em regiões vulcânicas no registro geológico. Eles decidiram, então, conduzir um experimento muito interessante. Pedaços de madeira foram colocados no lago e monitorados ao longo de sete anos. O resultado foi surpreendente. Os pedaços que permaneceram por mais tempo imersos no lago tiveram próximo de 40% de sua massa silicificada. A conclusão dos autores é bastante significativa para a compreensão de como os fósseis se formam. Segundo eles, “madeira silicificada pode se formar, sob condições apropriadas, em períodos de tempo tão curtos quanto dezenas a centenas de anos” [4]. Um detalhe muito interessante desse trabalho é o fato dos autores citarem um artigo do Geólogo australiano Andrew Snelling publicado na revista criacionista Creation [7].
Vamos agora relacionar essas descobertas com a proposta criacionista do Dilúvio bíblico. Citando John D. Morris,
“O período imediatamente anterior e pouco depois do Dilúvio foi um tempo de imenso vulcanismo, marcado por extensivas erupções na medida em que os continentes se afastavam, as cadeias de montanha eram elevadas, e o fundo do oceano era rebaixado”.
“Considere os Basaltos do Rio Colúmbia, onde os depósitos vulcânicos cobrem mais de 100.000 milhas quadradas no estado de Washington e Oregon, com o basalto tendo até uma milha de espessura!” [8].
Vulcanismo intenso provê as condições perfeitas para a fossilização de plantas. É notável o fato de que encontramos florestas inteiras preservadas desta maneira ao longo do registro fóssil [3]. Em outras palavras, a proposta catastrofista criacionista encontra-se completamente em acordo com o melhor conhecimento experimental de que dispomos. Além disso, a questão do tempo de fossilização também apoia a proposta criacionista. Nas palavras de Alkahane et al. [4], madeira silicificada pode se formar em “períodos de tempo tão curtos quanto dezenas a centenas de anos”. Portanto, quando falamos de madeira petrificada, um modelo que apela para uma grande catástrofe ocorrida há poucos milhares de anos está em pleno acordo com os dados de que dispomos. Mais do que isso, a proposta catastrofista criacionista tem se mostrado capaz de explicar aspectos de diversas áreas do conhecimento que são passados por alto ou atribuídos a causas improváveis na visão evolucionista.
Se o processo de fossilização da madeira ocorreu há poucos milhares de anos, poderia ter restado alguma matéria orgânica residual? Essa matéria orgânica poderia ser datada por carbono-14? Esse será o assunto de um outro artigo.
Referências:
[1] G. Scurfield, E.R. Segnit, Petrifaction of wood by silica minerals, Sediment. Geol. 39 (1984) 149–167. doi:10.1016/0037-0738(84)90048-4.
[2] R.F. Leo, E.S. Barghoorn, Silicification of wood, Harvard Univ. Bot. Mus. Leafl. 25 (1976) 1–47. http://www.biodiversitylibrary.org/item/31874 (accessed February 12, 2016).
[3] C. Ballhaus, C.T. Gee, C. Bockrath, K. Greef, T. Mansfeldt, D. Rhede, The silicification of trees in volcanic ash - An experimental study, Geochim. Cosmochim. Acta. 84 (2012) 62–74. doi:10.1016/j.gca.2012.01.018.
[4] H. Akahane, T. Furuno, H. Miyajima, T. Yoshikawa, S. Yamamoto, Rapid wood silicification in hot spring water: an explanation of silicification of wood during the Earth’s history, Sediment. Geol. 169 (2004) 219–228. doi:10.1016/j.sedgeo.2004.06.003.
[5] A.L. Karowe, T.H. Jefferson, Burial of trees by eruptions of Mount St Helens, Washington:implications for the interpretation of fossil forests, Geol. Mag. 124 (2009) 191. doi:10.1017/S001675680001623X.
[6] A.C. Sigleo, Geochemistry of silicified wood and associated sediments, Petrified Forest National Park, Arizona, Chem. Geol. 26 (1979) 151–163. doi:10.1016/0009-2541(79)90036-6.
[7] A. Snelling, “Instant” petrified wood, Creation. 17 (1995) 38–40.
[8] J.D. Morris, The Global Flood: Unlocking Earth’s Geology Hystory (Edição para Kindle), Institute for Creation Research, Dallas, 2012.

Bactérias consideradas as formas de vida mais antigas na Terra eram apenas rachaduras em cristais

Microcristais que foram confundidos com bactérias

A explosão do Cambriano é uma das muitas pedras nos sapatos dos defensores da Teoria da Evolução. Isso os tem levado a um busca desesperada por formas de vida simples nas camadas pré-cambrianas que apresentem qualquer conexão com aquelas encontradas nas camadas superiores. Algumas algas e supostas bactérias são relatadas nessas camadas pré-cambrianas, mas não se veem ali formas intermediárias claramente identificáveis como ancestrais de trilobitas ou de braquiópodes, por exemplo. Uma explicação simples para a presença de algas e bactérias nessas regiões é a observação de que nos dias atuais algas e bactérias também habitam rochas profundas. Na época do dilúvio, essas criaturas poderiam ter sido fossilizadas ali.

Estruturas microscópicas filamentosas, encontradas na Austrália ocidental, são consideradas por evolucionistas as formas de vida mais antigas de que se tem relato. As rochas nas quais essas estruturas se localizam têm idades estimadas em 3,5 bilhões de anos, na cronologia evolucionista. Essas estruturas foram encontradas há mais de duas décadas e foram identificadas como fósseis de bactérias fotossintéticas do Archeano.

Pois bem, um grupo de pesquisadores do Instituto Carnegie decidiu fazer aquilo que sempre coloca os evolucionistas em maus lençóis, ou seja, analisar as alegações de forma detalhada. Os pesquisadores, usando técnicas de construção de imagens sofisticas, observaram os interstícios entre os grãos microscópicos de cristais de quartzo nas vizinhanças de um dos supostos microfósseis e descobriram que esses interstícios estavam preenchidos por carbono.

Quando os pesquisadores olharam para o suposto microfóssil usando essa mesma técnica, perceberam que o filamento dividia vários pequenos microcristais, de forma que partes correspondentes desses microcristais eram encontradas nos dois lados dos filamentos. Isso é como cortar uma laranja ao meio e colocar um objeto entre as duas metades. Não é o que se espera de um processo de fossilização. Além disso, o carbono encontrado ao longo do filamento liga-se a outros veios que parecem estar preenchendo fissuras e o filamento parece também estar conectado a uma espécie de cratera local que não faz o menor sentido do ponto de vista biológico. Tudo isso indica que a rocha hospedeira e a estrutura filamentosa não se formaram juntamente. Ao invés disso, o cristal maior no qual a estrutura filamentosa é encontrada se partiu (dividindo também os grãos de tamanho menor) e as fissuras formadas foram posteriormente preenchidas por material rico em carbono. Em outras palavras, olhar para essa estrutura e ver ali uma bactéria é como olhar para as nuvens e tentar identificar figuras familiares.

O estudo não afirma que todas as estruturas microscópicas desse tipo são pseudofósseis, mesmo porque nem todas foram estudadas com o mesmo rigor, mas nos mostra que deve-se exercitar muita cautela para não tirar conclusões precipitadas baseadas em uma visão de mundo equivocada e sem o suporte experimental necessário.

Referências:

[1] D.M. Bower, A. Steele, M.D. Fries, O.R. Green, J.F. Lindsay, Raman Imaging Spectroscopy of a Putative Microfossil from the 3.46 Ga Apex Chert: Insights from Quartz Grain Orientation, Astrobiology. 16 (2016) 169.

(Origem e Vida)

 


O criacionismo e a variabilidade dos seres vivos

Matthew Ravosa, da Universidade de Notre Dame, liderou uma equipe que publicou recentemente um artigo na Biological Reviews [1, 2] a respeito da plasticidade dos aspectos físicos de uma dada espécie. Animais submetidos a dietas diferentes possuem desenvolvimento diferentes nos mais diversos níveis, como afirma o professor Ravosa: “Durante o crescimento pós-natal, mostramos que essas variações no estresse de mastigação relacionadas à dieta induzem uma cascata de mudanças nos níveis celular, de tecidos, protéicos e genéticos, de forma a manter a integridade das estruturas craniomandibulares envolvidas no processamento de alimento.” [1]

As variações induzidas nesses experimentos chegam mesmo a ser comparadas a diferenças observadas entre espécies distintas: “Em terceiro lugar, dada a longa duração dos experimentos, somos capazes de demonstrar que um padrão dietético iniciado ainda no período pós-natal e de duração prolongada pode resultar em níveis de variações das mandíbulas de uma única espécie em par com aquelas observadas entre espécies.” [1]

O professor Ravosa também chama a atenção para o tipo de dificuldade que isso traz para a interpretação dos fragmentos de ossos encontrados no registro fóssil: “Essas análises longitudinais mostram que os efeitos morfológicos da ‘sazonalidade’ dietética são detectados apenas em algumas regiões do crânio, o que atrapalha ainda mais nossa habilidade de reconstruir acuradamente a biologia de organismos fósseis representados por espécimes singulares e fragmentados.” [1] Em outras palavras, um pesquisador corre o risco de anunciar a descoberta de uma nova espécie com base em uns poucos fragmentos de ossos, quando na verdade o que tem em mãos pode ser apenas uma variação de uma espécie já conhecida induzida pela própria alimentação. Ressalte-se que a definição de espécies é, há muito tempo, um tema controverso.

Os criacionistas, ao contrário do que afirmam determinados livros-texto universitários, [3] não são fixistas, isto é, não defendem que as espécies que existem hoje foram criadas da forma como as conhecemos desde o início. A própria tese criacionista para o repovoamento do mundo animal após o dilúvio depende da existência de variabilidade. Alguns chamam isso de microevolução, embora existam boas razões para utilizarmos termos como diversificação de baixo nível.

O tipo de variabilidade que normalmente é encontrado no registro fóssil, e que é invocado exaustivamente como evidencia a favor da evolução, ajusta-se melhor à ideia criacionista de variações limitadas. É comum, quando se pesquisa o argumento em fonte evolucionista, encontrarmos um cenário que coloca de um lado a proposta evolucionista, que prevê variações, e do outro uma distorcida proposta criacionista, que não prevê variações. Diante das variações observadas em experimentos e no registro fóssil, argumenta-se então que a evidência é favorável à evolução. Nada mais enganoso.

Quando se entende que ambas as proposta preveem variações, recai sobre os evolucionistas o ônus de demonstrar as transformações que excedem essas mudanças em pequena escala, ou o que muitos chamariam de macroevolução. Nas palavras de um evolucionista sincero neste ponto, “é possível imaginar, por extrapolação, que, se os processos em pequena escala que vimos continuassem por um período de tempo suficientemente longo, eles poderiam produzir a variedade moderna da vida”.[3]  E é esse o ponto que realmente deveria figurar no centro do debate: essa extrapolação é válida? Não seriam o grande número de fraudes e interpretações equivocadas sintomas de que a extrapolação evolucionista se sustenta forçosamente, mais apoiada em uma visão de mundo do que em evidência paupável?

Referências:

[1] University of Notre Dame. "Reinterpreting the fossil record on jaws." ScienceDaily. ScienceDaily, 17 August 2016. <www.sciencedaily.com/releases/2016/08/160817133139.htm>

[2] Matthew J. Ravosa, Rachel A. Menegaz, Jeremiah E. Scott, David J. Daegling, Kevin R. McAbee. Limitations of a morphological criterion of adaptive inference in the fossil record. Biological Reviews, 2015; DOI: 10.1111/brv.12199

[3] Mark Ridley, Evolução, 3a. Ed., Artmed, 2006,  p.67, 77.

 

(Origem e Vida)


Criacionista sugeriu a seleção natural antes de Darwin

Edward Blyth

Ao contrário do que muitos pensam, os criacionistas não rejeitam a ideia de seleção natural.[1,2] Todavia, discordam dos evolucionistas a respeito da extensão das modificações que esse processo é capaz de produzir. Normalmente, coloca-se um sinal de igualdade entre seleção natural e macroevolução; apela-se à primeira para justificar a última. Os exemplos clássicos de evidências a favor evolução que encontramos em livros-texto tratam de variações em pequena escala, ou seja, de microevolução (como mudanças de cor, tamanho, resistência a antibióticos etc). Como os próprios autores evolucionistas admitem, a macroevolucão só pode ser inferida a partir de extrapolação.[3]

Pois bem, não é novidade que Darwin não foi o primeiro a tratar da seleção natural. James Hutton escreveu sobre o mecanismo em 1794, William Wells em 1818 e Patrick Matthew em 1831.[4] Segundo alguns autores, até mesmo William Paley teria antecipado o conceito seleção natural, em 1803.[5] Darwin afirmava ter tomado conhecimento da contribuição desses autores somente após a publicação de A Origem das Espécies, em 1859.[4]

Em 1835, Edward Blyth publicou um artigo no Magazine of Natural History [6] no qual se pode encontrar o mecanismo de seleção natural de forma surpreendentemente clara. Existem evidências históricas de que Darwin era um leitor do Magazine of Natural History,[7] mas não se pode afirmar com certeza que ele tenha lido o trabalho de Blyth antes de elaborar sua teoria.
Embora o termo seleção natural não seja utilizado explicitamente no artigo de Blyth, a ideia está indubitavelmente presente:
“É uma lei geral da natureza para todas as criaturas a propagação de sua própria semelhança: e isso se estende às minúcias mais triviais, para as mais tênues peculiaridades individuais; e assim, entre nós mesmos, vemos a semelhança de uma família sendo transmitida de geração em geração. Quando dois animais acasalam, cada um possuindo uma certa característica em comum, não importando o quão trivial ela seja, existe também uma tendência decisiva na natureza para que aquela peculiaridade se intensifique; e se a prole desses animais for separada, e se somente aqueles nos quais a mesma peculiaridade é mais aparente forem selecionados para reprodução, a próxima geração irá possuí-la em um grau ainda mais notável; e assim por diante, até que a longo prazo a variedade que designei de raça seja formada, podendo ser muito diferente do tipo original”.[6]
“Em um grande rebanho de gado, o touro mais forte afasta de si os indivíduos mais novos e mais fracos de seu próprio sexo, e permanece como o único mestre do rebanho; de modo que todos os jovens que venham a ser produzidos tenham sua origem naquele indivíduo que possui máxima potência e força física; e que, consequentemente, na batalha pela existência, foi o mais capaz para manter seu território, e defender-se de cada inimigo. De maneira similar, entre os animais que procuram sua comida por meio de sua agilidade, força, ou delicadeza dos sentidos, aquele melhor organizado deve sempre obter a maior quantidade; e deve, portanto, tornar-se o mais forte fisicamente, e assim ser habilitado, pela derrota de seus oponentes, a transmitir suas qualidades superiores a um número maior de descendentes”. [6]
Contudo, Blyth não sustentava que a seleção natural seria capaz de proezas como converter um urso em uma baleia, como Darwin sugeriu na primeira edição de seu livro mais famoso.[8] Blyth via esse mecanismo como um recurso que tinha por fim conservar as qualidades típicas de uma espécie:
“A mesma lei, portanto, que foi designada pela Providência para manter as qualidades típicas de uma espécie, pode ser facilmente convertida pelo homem em um meio de criar diferentes variedades; mas também está claro que, se o homem não preservar essas raças pelo controle do intercurso sexual, elas irão naturalmente retornar ao tipo original”. [6]
Em outras palavras, o mecanismo é o mesmo que Darwin publicaria 24 anos mais tarde - que tem como resultado a propagação das qualidades dos indivíduos mais aptos a se reproduzir - mas o efeito final, segundo Blyth, seria o de reestabelecer as variedades de animais aos seus tipos originais e não criar novas espécies sem limite aparente para as modificações. Diga-se de passagem, não é essa a posição defendida pelos criacionistas de hoje. Mas o ponto em questão aqui é a prioridade de Blyth sobre Darwin quanto ao mecanismo de seleção natural.
Edward Blyth, ao contrário de Darwin, não tentou descrever uma natureza sem um Criador. Blyth, como tantos outros cientistas importantes (desde muito antes de seu tempo até os dias atuais), reconheceu a origem de tudo:
“Existe, de forma muito estranha, uma diferença de opinião entre naturalistas quanto a serem essas mudanças sazonais um desígnio da Providência como uma adaptação a mudanças de temperatura, ou um meio de preservar as várias espécies de seus inimigos, pela adaptação de sua matiz às cores da superfície; (...) O fato é que elas respondem a ambos os propósitos; e elas estão entre aqueles impressionantes exemplos de planejamento, que tão claramente e fortemente atestam a existência de uma grandiosa e onisciente Primeira Causa”. [6]
Blyth pode ter errado com sua ideia de conservação. Mas Darwin também errou em outros pontos e principalmente ao propor o que hoje chamamos de macroevolução. Em um ambiente no qual o materialismo ganhava cada vez mais força, Darwin se tornou um ícone mundial. Como o próprio Richard Dawkins admite, “só depois de Darwin é possível ser um ateu intelectualmente satisfeito”.[9]   Edward Blyth foi praticamente lançado no esquecimento. Mas Alguém certamente se lembrará de que ele deu ao Criador a glória que lhe era devida.
“Portanto, todo aquele que me confessar diante dos homens, também eu o confessarei diante de meu Pai, que está nos céus; mas aquele que me negar diante dos homens, também eu o negarei diante de meu Pai, que está nos céus” (Mateus 10:32,33).
Referências:
[1]      G. Purdom, N.T. Jeanson, Understanding Natural Selection, Answers in Genesis, Https://answersingenesis.org/natural-Selection/understanding-Natural-Selection/. (2016).
[2]      P.G. Humber, Natural Selection - A Creationist’s Idea, Acts Facts. 26 (1997).
[3]      M. Riddley, Evolução, 3a. ed., Artmed, Porto Alegre, 2006.
[4]      P.N. Pearson, In retrospect: An Investigation of the Principles of Knowledge and of the Progress of Reason, from Sense to Science and Philosophy, Nature. 425 (2003) 665–665. doi:10.1038/425665a.
[5]      W.L. Abler, What Darwin knew, Nature. 426 (2003) 759–759. doi:10.1038/426759b.
[6]      E. Blyth, An Attempt to Classify the “Varieties” of Animals, with Observations on the Marked Seasonal and Other Changes Which Naturally Take Place in Various British Species, and Which Do Not Constitute Varieties, Mag. Nat. Hist. 8 (1835) 40–53.
[7]      J.E. Schwartz, Charles Darwin’s Debt to Malthus and Edward Blyth, J. Hist. Biol. 7 (1974) 301–318.
[8]      C.R. Darwin, On The Origin of Species by Means of Natural Selection, or The Preservation of Favoured Races in the Strugg;e for Life, Facsímile , Harvard University Press, Cambridge, 1859.
[9]      R. Dawkins, O Relojoeiro Cego, Companhia das Letras, São Paulo, 2001.

Pakicetus

Pakicetus, uma baleia com pernas?

A baleia fake da Science

“Estivemos ansiosamente antecipando alguma descoberta desse tipo, mas não estávamos preparados para uma evidência tão convincente da estreita relação faunal entre a Ásia oriental e a América do Norte ocidental tal como é revelado por esse diminuto espécime.”[1] Essas palavras aparecem logo na quinta linha do artigo publicado por Henry F. Osborn em 1922 na revista Science, no qual ele descreve o famoso homem de Nebraska. A evidência tão convincente à qual ele se referia era um dente de cerca de 1 cm. Apenas isso. No artigo, Osborn discute detalhadamente as características do dente que o levaram a concluir que ele havia pertencido a um ancestral do homem. Em 1927, a Science se viu obrigada a publicar uma retratação com o título “Hesperopithecus apparently not an ape nor a man” (Hesperopithecus, aparentemente nem macaco nem homem).[2] O restante do esqueleto ao qual pertencia o dente havia sido encontrado. Tratava-se de um javali extinto!

Mas a ciência vive de erros e acertos e, naturalmente, o tipo de abordagem que levou ao homem de Nebraska seria revisto no futuro para que não se repetisse tamanho vexame. Certo? Errado. As baleias que o digam.
A capa da edição de 22 de abril de 1983 da Science, 61 anos depois da publicação do homem de Nebraska, estampava um animal meio mamífero terrestre, meio baleia.[3] Na ilustração, o animal saía da margem de uma praia e mergulhava para buscar comida na água. Tratava-se do Pakicetus, nome dado à estranha criatura encontrada no Paquistão.
O Dr. Philip D. Gingerish, lider da pesquisa que apresentou o Pakicetus à comunidade científica, declarou na época que “o Pakicetus e outros cetáceos do início do Eoceno representam um estágio anfíbio na transição evolucionária gradual das baleias primitivas da terra para o mar.” [3] Mas o que era realmente conhecido a respeito do Pakicetus? Apenas fragmentos dos ossos do crânio. A partir deles, todo o crânio foi reconstruído e nele foram adicionadas características que não podiam ser deduzidas apenas com base nos fragmentes. Supôs-se que o Pakicetus possuísse olhos nas laterais da cabeça, como as baleias, e um respirador no topo do focinho. Esse respirador estaria a meio caminho da posição dos respiradores das baleias modernas. Supôs-se, ainda, que o Pakicetus possuísse nadadeiras, que não tivesse um pescoço visível (como nas baleias) e que podia tanto caminhar em terra como nadar no mar, como as baleias.
18 anos depois de o Dr. Gingerich ter encontrado os fragmentos do crânio do Pakicetus, outros 4 crânios parciais e 150 ossos de Pakicetus foram descobertos, permitindo que os cientistas construissem um esqueleto quase completo.[4] Com base nas novas descobertas, pôde-se concluir que o Pakicetus não se assemelhava nada com o animal que estampou a capa da Science em 1983. Ele na verdade possuía um nariz na extremidade do focinho, não um respirador de baleia, pés preparados para correr (não nadadeiras), pescoço longo e visível (não ausente, como nas baleias) e olhos no topo da cabeça (não nas laterais). Não seria um exagero chamar o Pakicetus de a “baleia de Nebraska”.
Mesmo assim, nos dias de hoje ainda se insiste em que o Pakicetus esteja na linha de ancestralidade dos cetáceos modernos com base em características como uma suposta semelhança entre suas bulas auditivas. Os cetáceos modernos possuem uma estrutura chamada de processo sigmoide, algo similar a um polegar estendido. Segundo o Dr. Zhe-Xi Luo, especialista em evolução de mamíferos, o Pakicetus não possuía um processo sigmoide na bula auditiva, mas simplesmente uma placa plana. Placas como essa são encontradas em mamíferos terrestres.[5]  Observe a figura ao lado e tire suas próprias conclusões.
A história toda de como esse animal acabou sendo chamado de baleia é um exemplo muito interessante de como a visão de mundo de um cientista possui um peso decisivo em suas interpretações, especialmente quando tentamos reconstruir a história de um passado do qual sobraram apenas alguns vestígios. Os fragmentos de crânio encontrados pelo Dr. Gingerinsh constituem os dados experimentais dos quais ele dispunha. O significado que ele atribuiu àqueles fragmentos foi pura interpretação baseada em sua visão de mundo evolucionista.
A mídia cientifica muito frequentemente nos apresenta os dados fósseis e sua interpretação evolucionista como um conjunto indissociável. Extrapolações e inferências são apresentadas como fatos incontestáveis e procura-se lançar ao ridículo aqueles que se atrevem a olhar para os mesmos dados com uma visão de mundo diferente. É preciso ter isso em mente quando nos forem apresentados os próximos homens-macaco e baleias com pernas.
Concepção artística atual do Pakicetus
Referências:
[1]    H.F. Osborn, Hesperopithecus, the first anthropoid primate found in America, Science, 55 (1922) 463–465. doi:10.1126/science.55.1427.463.
[2]    W.K. Gregory, Hesperopithecus apparently not an ape nor a man, Science, 66 (1927) 579–581. doi:10.1126/science.66.1720.579.
[3]    P.D. Gingerich, N.A. Wells, D.E. Russell, S.M.I. Shah, Origin of Whales in Epicontinental Remnant Seas: New Evidence from the Early Eocene of Pakistan, Science, 220 (1983) 403–406. doi:10.1126/science.220.4595.403.
[4]    J.G.M. Thewissen, E.M. Williams, L.J. Roe, S.T. Hussain, Skeletons of terrestrial cetaceans and the relationship of whales to artiodactyls, Nature. 413 (2001) 277–281. doi:10.1038/35095005.
[5]   C. Werner, Evolution: The Grand Experiment Vol. 1, 3rd ed., New Leaf Press, 2014.

O Prêmio Nobel de Química e a evidência de um Designer

O Prêmio Nobel de Química de 2016 foi concedido a Jean-Pierre Sauvage, Sir J. Fraser Stoddart e Bernard L. Feringa “pelo design e síntese de máquinas moleculares”.[1] O trabalho desses pesquisadores é realmente muito interessante. Você já parou para se perguntar o quão pequena pode ser uma máquina? Imagine um computador de apenas 2 mm! Pois bem, isso já existe. Trata-se do Michigan Micro Mote (M3), desenvolvido por pesquisadores da Universidade de Michigan. [2] O M3 é um sistema de computação completo, sendo capaz de receber dados, processar esses dados, tomar decisões e produzir dados de saída. Parece realmente incrível, mas o que os ganhadores do Nobel de Química de 2016 fizeram vai muito além. Por exemplo, Stoddart e sua equipe, em 1991, desenvolveram um rotaxano. [3] Para isso, Stoddart coordenou a criação de uma molécula longa, na forma de um eixo, e a inseriu em uma outra molécula em forma de anel. Mudando o ambiente químico, os pesquisadores podiam fazer o anel se mover ao longo do eixo, da mesma forma como um trem se move sobre seus trilhos. Mas o movimento era de certa forma bem restrito, como se o trem pudesse ir e voltar apenas entre duas estações.

Em 1999, Feringa e seu grupo publicaram um trabalho no qual descrevem a rotação controlada de uma molécula. [4] O movimento molecular é, por natureza, caótico. As moléculas transladam e realizam rotações em direções aleatórias. Feringa, no entanto, utilizou-se de técnicas bastante sofisticadas para fazer com que uma parte da uma molécula girasse em relação à outra parte em uma direção definida e de forma controlada. Para isso, foi necessário realizar um procedimento que envolvia resfriamento a -55 oC, seguido de irradiação com luz de comprimentos de onda bem específicos e aquecimentos em etapas controladas. Embora os pesquisadores tenham mostrado que esse tipo de movimento é possível, a forma como isso foi alcançado não é nada prática.

Um outro tipo de máquina molecular descoberta há alguns anos realiza tarefas fantásticas. Essa máquina possui um compartimento capaz de armazenar algum tipo de material para transporte e um sistema de tração que a faz se movimentar em uma direção definida. Essa maquina trabalha de forma integrada com outras e é capaz de receber sua carga, caminhar sobre um filamento e entregar a carga em seu destino. O mais impressionante é que ela faz tudo isso sem intervenção externa, ao contrário das máquinas de Sauvage, Stoddart e Feringa. Mas se não bastasse isso, existe também uma linha de montagem para essa maquina, com um rigoroso controle de qualidade. Cada parte dessa linha de montagem é composta por outras máquinas moleculares bastante complexas. Essas máquinas são capazes de acessar o banco de dados com o projeto para a construção, selecionar os materiais certos, executar a montagem em uma sequência coerente e realizar um controle de qualidade em cada etapa. A própria linha de montagem está sujeita a um protocolo de controle que determina quando uma máquina molecular deve ser produzida, ou seja, a produção se dá de acordo com a demanda. Comparar essa máquina de transporte e o seu sistema de montagem com as máquinas de Sauvage, Stoddart e Feringa é como comparar um chocalho de criança às últimas gerações de smatphones. Mas então por que o Prêmio Nobel de Química foi outorgado a esses pesquisadores e não ao inventor dessa máquina de transporte?

Essa máquina de transporte é chamada de cinesina, é encontrada no interior das células e têm a função de transportar as proteínas recém preparadas até o local onde elas são necessárias. A linha de montagem é todo o aparato celular para a síntese de proteínas. Tudo funciona como numa fábrica com tecnologia sofisticadíssima, com procedimentos automatizados, mini robôs programados para executar funções bastante especializadas e softwares extremamente eficientes. Mas pasmem! Enquanto a Academia de Ciências concede um Prêmio Nobel aos brinquedos de Sauvage, Stoddart e Feringa, em reconhecimento ao seu árduo trabalho de planejamento e síntese, um grupo de pretensos cientistas alega que toda a maquinaria celular surgiu completamente ao acaso!

Os ganhadores do Prêmio Nobel de Química de 2016 não foram, nem de longe, os inventores dos motores moleculares. São imitadores de algo que já está aí desde o princípio. Se algo tão simples como uma molécula que pode se mover em uma direção merece um Prêmio Nobel, que tipo de reconhecimento daríamos ao Projetista das cinesinas e do flagelo bacteriano, obras primas químicas inigualáveis? Um interruptor ou um rotor (tal como os de Sauvage, Stoddart e Feringa) precisa de um projetista e de uma hábil equipe para sua construção, que tenha à sua disposição compostos químicos muito específicos e caros e equipamentos bastante sofisticados. Mas quando nos deparamos com a cinesina, aí tudo muda. Ela simplesmente surgiu de processos aleatórios, não teve um Projetista e nem um Criador. Isso porque já estamos nos referindo ao produto final, sem sequer levar em consideração que as máquinas biológicas se montam sozinhas. Não precisam de nossa interferência.

Quando Paley apresentou seu argumento em meados do século XIX, os críticos do planejamento o acusaram de tecer uma analogia entre coisas muito diferentes. Não se poderia comparar o corpo humano com as máquinas construídas pelo homem, diziam eles. Numa época em que quase nada se sabia sobre a vida no nível subcelular, essa objeção poderia até ser razoável. Todavia, os avanços recentes da bioquímica e da química têm mostrado que a correspondência entre as máquinas produzidas pelo homem e os sistemas encontrados no interior das células é muito mais forte do que se imaginava a princípio. E mais do que isso, que a tecnologia molecular do interior das células deixa nossos melhores esforços no chinelo. Até quando vamos continuar fechando os olhos para o fato óbvio de que há uma Mente Inteligente por trás de tudo isso? Só não conseguem aceitar isso aqueles que fizeram um pacto não científico com a filosofia materialista. Como diz um ditado popular, o pior tipo de cego é aquele que não quer ver.

Referências:

[1] Press Release: The Nobel Prize in Chemistry 2016, https://www.nobelprize.org/nobel_prizes/chemistry/laureates/2016/press.html.
[2] Michigan Micro Mote (M3) Makes History, http://www.eecs.umich.edu/eecs/about/articles/2015/Worlds-Smallest-Computer-Michigan-Micro-Mote.html.
[3] P.L.Anelli,N.Spencer,J.F.Stoddart,J.Am.Chem.Soc.1991, 113,5131–5133.
[4] N. Koumura, R. W. J. Zijlstra, R. A. van Delden, N. Harada, B. L. Feringa, Nature, 401, 152-155.

(Origem e Vida)